Bounds in L^1 Wasserstein distance on the normal approximation of general M-estimators

11/18/2021
by   François Bachoc, et al.
0

We derive quantitative bounds on the rate of convergence in L^1 Wasserstein distance of general M-estimators, with an almost sharp (up to a logarithmic term) behavior in the number of observations. We focus on situations where the estimator does not have an explicit expression as a function of the data. The general method may be applied even in situations where the observations are not independent. Our main application is a rate of convergence for cross validation estimation of covariance parameters of Gaussian processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro