Bridging the Gap: Applying Assurance Arguments to MIL-HDBK-516C Certification of a Neural Network Control System with ASIF Run Time Assurance Architecture

03/27/2023
by   Jonathan Rowanhill, et al.
0

Recent advances in artificial intelligence and machine learning may soon yield paradigm-shifting benefits for aerospace systems. However, complexity and possible continued on-line learning makes neural network control systems (NNCS) difficult or impossible to certify under the United States Military Airworthiness Certification Criteria defined in MIL-HDBK-516C. Run time assurance (RTA) is a control system architecture designed to maintain safety properties regardless of whether a primary control system is fully verifiable. This work examines how to satisfy compliance with MIL-HDBK-516C while using active set invariance filtering (ASIF), an advanced form of RTA not envisaged by the 516c committee. ASIF filters the commands from a primary controller, passing on safe commands while optimally modifying unsafe commands to ensure safety with minimal deviation from the desired control action. This work examines leveraging the core theory behind ASIF as assurance argument explaining novel satisfaction of 516C compliance criteria. The result demonstrates how to support compliance of novel technologies with 516C as well as elaborate how such standards might be updated for emerging technologies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset