C^2SP-Net: Joint Compression and Classification Network for Epilepsy Seizure Prediction
Recent development in brain-machine interface technology has made seizure prediction possible. However, the communication of large volume of electrophysiological signals between sensors and processing apparatus and related computation become two major bottlenecks for seizure prediction systems due to the constrained bandwidth and limited computation resource, especially for wearable and implantable medical devices. Although compressive sensing (CS) can be adopted to compress the signals to reduce communication bandwidth requirement, it needs a complex reconstruction procedure before the signal can be used for seizure prediction. In this paper, we propose C^2SP-Net, to jointly solve compression, prediction, and reconstruction with a single neural network. A plug-and-play in-sensor compression matrix is constructed to reduce transmission bandwidth requirement. The compressed signal can be used for seizure prediction without additional reconstruction steps. Reconstruction of the original signal can also be carried out in high fidelity. Prediction accuracy, sensitivity, false prediction rate, and reconstruction quality of the proposed framework are evaluated under various compression ratios. The experimental results illustrate that our model outperforms the competitive state-of-the-art baselines by a large margin in prediction accuracy. In particular, our proposed method produces an average loss of 0.35 prediction accuracy with a compression ratio ranging from 1/2 to 1/16.
READ FULL TEXT