Can Connected Autonomous Vehicles really improve mixed traffic efficiency in realistic scenarios?

07/07/2021
by   Mohit Garg, et al.
0

Connected autonomous vehicles (CAVs) can supplement the information from their own sensors with information from surrounding CAVs for decision making and control. This has the potential to improve traffic efficiency. CAVs face additional challenges in their driving, however, when they interact with human-driven vehicles (HDVs) in mixed-traffic environments due to the uncertainty in human's driving behavior e.g. larger reaction times, perception errors, etc. While a lot of research has investigated the impact of CAVs on traffic safety and efficiency at different penetration rates, all have assumed either perfect communication or very simple scenarios with imperfect communication. In practice, the presence of communication delays and packet losses means that CAVs might receive only partial information from surrounding vehicles, and this can have detrimental effects on their performance. This paper investigates the impact of CAVs on traffic efficiency in realistic communication and road network scenarios (i.e. imperfect communication and large-scale road network). We analyze the effect of unreliable communication links on CAVs operation in mixed traffic with various penetration rates and evaluate traffic performance in congested traffic scenarios on a large-scale road network (the M50 motorway, in Ireland). Results show that CAVs can significantly improve traffic efficiency in congested traffic scenarios at high penetration rates. The scale of the improvement depends on communication reliability, with a packet drop rate of 70 congestion by 28.7 compared to perfect communication.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset