Capturing the learning curves of generic features maps for realistic data sets with a teacher-student model

02/16/2021
by   Bruno Loureiro, et al.
6

Teacher-student models provide a powerful framework in which the typical case performance of high-dimensional supervised learning tasks can be studied in closed form. In this setting, labels are assigned to data - often taken to be Gaussian i.i.d. - by a teacher model, and the goal is to characterise the typical performance of the student model in recovering the parameters that generated the labels. In this manuscript we discuss a generalisation of this setting where the teacher and student can act on different spaces, generated with fixed, but generic feature maps. This is achieved via the rigorous study of a high-dimensional Gaussian covariate model. Our contribution is two-fold: First, we prove a rigorous formula for the asymptotic training loss and generalisation error achieved by empirical risk minimization for this model. Second, we present a number of situations where the learning curve of the model captures the one of a realistic data set learned with kernel regression and classification, with out-of-the-box feature maps such as random projections or scattering transforms, or with pre-learned ones - such as the features learned by training multi-layer neural networks. We discuss both the power and the limitations of the Gaussian teacher-student framework as a typical case analysis capturing learning curves as encountered in practice on real data sets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset