Cartesian Tree Subsequence Matching

02/09/2022
by   Tsubasa Oizumi, et al.
0

Park et al. [TCS 2020] observed that the similarity between two (numerical) strings can be captured by the Cartesian trees: The Cartesian tree of a string is a binary tree recursively constructed by picking up the smallest value of the string as the root of the tree. Two strings of equal length are said to Cartesian-tree match if their Cartesian trees are isomorphic. Park et al. [TCS 2020] introduced the following Cartesian tree substring matching (CTMStr) problem: Given a text string T of length n and a pattern string of length m, find every consecutive substring S = T[i..j] of a text string T such that S and P Cartesian-tree match. They showed how to solve this problem in Õ(n+m) time. In this paper, we introduce the Cartesian tree subsequence matching (CTMSeq) problem, that asks to find every minimal substring S = T[i..j] of T such that S contains a subsequence S' which Cartesian-tree matches P. We prove that the CTMSeq problem can be solved efficiently, in O(m n p(n)) time, where p(n) denotes the update/query time for dynamic predecessor queries. By using a suitable dynamic predecessor data structure, we obtain O(mn loglog n)-time O(n log m)-space solution for CTMSeq. This contrasts CTMSeq with closely related order-preserving subsequence matching (OPMSeq) which was shown to be NP-hard by Bose et al. [IPL 1998].

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset