Causally Disentangled Generative Variational AutoEncoder

02/23/2023
by   SeungHwan An, et al.
0

We propose a new supervised learning method for Variational AutoEncoder (VAE) which has a causally disentangled representation and achieves the causally disentangled generation (CDG) simultaneously. In this paper, CDG is defined as a generative model able to decode an output precisely according to the causally disentangled representation. We found that the supervised regularization of the encoder is not enough to obtain a generative model with CDG. Consequently, we explore sufficient and necessary conditions for the decoder and the causal effect to achieve CDG. Moreover, we propose a generalized metric measuring how a model is causally disentangled generative. Numerical results with the image and tabular datasets corroborate our arguments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset