CDPM: Convolutional Deformable Part Models for Person Re-identification
Part-level representations are essential for robust person re-identification. Due to errors in pedestrian detection, there are usually severe mis-alignment problems for body parts, which degrade the quality of part representations. To handle this problem, we propose a novel model named Convolutional Deformable Part Models (CDPM). CDPM works by decoupling the complex part alignment procedure into two easier steps. First, a vertical alignment step detects each part in the vertical direction with the help of a multi-task learning model. Second, a horizontal refinement step based on self-attention suppresses the background information around each detected body part. Since the two steps are performed orthogonally and sequentially, the difficulty of part alignment is significantly reduced. In the testing stage, CDPM is able to accurately align flexible body parts without the need of any outside information. Extensive experimental results justify the effectiveness of CDPM for part alignment. Most impressively, CDPM achieves state-of-the-art performance on three large-scale datasets: Market-1501, DukeMTMC-ReID,and CUHK03.
READ FULL TEXT