ChromaGAN: An Adversarial Approach for Picture Colorization

07/23/2019
by   Patricia Vitoria, et al.
3

The colorization of grayscale images is an ill-posed problem, with multiple correct solutions. In this paper, an adversarial learning approach is proposed. A generator network is used to infer the chromaticity of a given grayscale image. The same network also performs a semantic classification of the image. This network is framed in an adversarial model that learns to colorize by incorporating perceptual and semantic understanding of color and class distributions. The model is trained via a fully self-supervised strategy. Qualitative and quantitative results show the capacity of the proposed method to colorize images in a realistic way, achieving top-tier performances relative to the state-of-the-art.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset