CiT-Net: Convolutional Neural Networks Hand in Hand with Vision Transformers for Medical Image Segmentation
The hybrid architecture of convolutional neural networks (CNNs) and Transformer are very popular for medical image segmentation. However, it suffers from two challenges. First, although a CNNs branch can capture the local image features using vanilla convolution, it cannot achieve adaptive feature learning. Second, although a Transformer branch can capture the global features, it ignores the channel and cross-dimensional self-attention, resulting in a low segmentation accuracy on complex-content images. To address these challenges, we propose a novel hybrid architecture of convolutional neural networks hand in hand with vision Transformers (CiT-Net) for medical image segmentation. Our network has two advantages. First, we design a dynamic deformable convolution and apply it to the CNNs branch, which overcomes the weak feature extraction ability due to fixed-size convolution kernels and the stiff design of sharing kernel parameters among different inputs. Second, we design a shifted-window adaptive complementary attention module and a compact convolutional projection. We apply them to the Transformer branch to learn the cross-dimensional long-term dependency for medical images. Experimental results show that our CiT-Net provides better medical image segmentation results than popular SOTA methods. Besides, our CiT-Net requires lower parameters and less computational costs and does not rely on pre-training. The code is publicly available at https://github.com/SR0920/CiT-Net.
READ FULL TEXT