Classical Coding Problem from Transversal T Gates
Universal quantum computation requires the implementation of a logical non-Clifford gate. In this paper, we characterize all stabilizer codes whose code subspaces are preserved under physical T and T^-1 gates. For example, this could enable magic state distillation with non-CSS codes and, thus, provide better parameters than CSS-based protocols. However, among non-degenerate stabilizer codes that support transversal T, we prove that CSS codes are optimal. We also show that triorthogonal codes are, essentially, the only family of CSS codes that realize logical transversal T via physical transversal T. Using our algebraic approach, we reveal new purely-classical coding problems that are intimately related to the realization of logical operations via transversal T. Decreasing monomial codes are also used to construct a code that realizes logical CCZ. Finally, we use Ax's theorem to characterize the logical operation realized on a family of quantum Reed-Muller codes. This result is generalized to finer angle Z-rotations in arXiv:1910.09333.
READ FULL TEXT