Classification-driven Single Image Dehazing

11/21/2019
by   Yanting Pei, et al.
9

Most existing dehazing algorithms often use hand-crafted features or Convolutional Neural Networks (CNN)-based methods to generate clear images using pixel-level Mean Square Error (MSE) loss. The generated images generally have better visual appeal, but not always have better performance for high-level vision tasks, e.g. image classification. In this paper, we investigate a new point of view in addressing this problem. Instead of focusing only on achieving good quantitative performance on pixel-based metrics such as Peak Signal to Noise Ratio (PSNR), we also ensure that the dehazed image itself does not degrade the performance of the high-level vision tasks such as image classification. To this end, we present an unified CNN architecture that includes three parts: a dehazing sub-network (DNet), a classification-driven Conditional Generative Adversarial Networks sub-network (CCGAN) and a classification sub-network (CNet) related to image classification, which has better performance both on visual appeal and image classification. We conduct comprehensive experiments on two challenging benchmark datasets for fine-grained and object classification: CUB-200-2011 and Caltech-256. Experimental results demonstrate that the proposed method outperforms many recent state-of-the-art single image dehazing methods in terms of image dehazing metrics and classification accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset