Classification of hazard event via language fractal
HAZOP is a safety paradigm undertaken to reveal hazards in industry, its report covers valuable hazard events (HaE). The research on HaE classification has much irreplaceable pragmatic values. However, no study has paid such attention to this topic. In this paper, we present a novel deep learning model termed DLF to explore the HaE classification through fractal method from the perspective of language. The motivation is that (1): HaE can be naturally regarded as a kind of time series; (2): the meaning of HaE is driven by word arrangement. Specifically, first we employ BERT to vectorize HaE. Then, we propose a new multifractal method termed HmF-DFA to calculate HaE fractal series by analyzing the HaE vector who is regarded as a time series. Finally, we design a new hierarchical gating neural network (HGNN) to process the HaE fractal series to accomplish the classification of HaE. We take 18 processes for case study. We launch the experiment on the basis of their HAZOP reports. Experimental results demonstrate that our DLF classifier is satisfactory and promising, the proposed HmF-DFA and HGNN are effective, and the introduction of language fractal into HaE is feasible. Our HaE classification system can serve HAZOP and bring application incentives to experts, engineers, employees, and other enterprises, which is conducive to the intelligent development of industrial safety. We hope our research can contribute added support to the daily practice in industrial safety and fractal theory.
READ FULL TEXT