Classification with Costly Features using Deep Reinforcement Learning
We study a classification problem where each feature can be acquired for a cost and the goal is to optimize the trade-off between classification precision and the total feature cost. We frame the problem as a sequential decision-making problem, where we classify one sample in each episode. At each step, an agent can use values of acquired features to decide whether to purchase another one or whether to classify the sample. We use vanilla Double Deep Q-learning, a standard reinforcement learning technique, to find a classification policy. We show that this generic approach outperforms Adapt-Gbrt, currently the best-performing algorithm developed specifically for classification with costly features.
READ FULL TEXT