Classifying one-dimensional discrete models with maximum likelihood degree one
We propose a classification of all one-dimensional discrete statistical models with maximum likelihood degree one based on their rational parametrization. We show how all such models can be constructed from members of a smaller class of 'fundamental models' using a finite number of simple operations. We introduce 'chipsplitting games', a class of combinatorial games on a grid which we use to represent fundamental models. This combinatorial perspective enables us to show that there are only finitely many fundamental models in the probability simplex Δ_n for n≤ 4.
READ FULL TEXT