CLIP-Art: Contrastive Pre-Training for Fine-Grained Art Classification

07/30/2021
by   Marcos V. Conde, et al.
1

Existing computer vision research in artwork struggles with artwork's fine-grained attributes recognition and lack of curated annotated datasets due to their costly creation. In this work, we use CLIP (Contrastive Language-Image Pre-Training) for training a neural network on a variety of art images and text pairs, being able to learn directly from raw descriptions about images, or if available, curated labels. Model's zero-shot capability allows predicting the most relevant natural language description for a given image, without directly optimizing for the task. Our approach aims to solve 2 challenges: instance retrieval and fine-grained artwork attribute recognition. We use the iMet Dataset, which we consider the largest annotated artwork dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset