CLIP the Gap: A Single Domain Generalization Approach for Object Detection

01/13/2023
by   Vidit Vidit, et al.
0

Single Domain Generalization (SDG) tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain. While this has been well studied for image classification, the literature on SDG object detection remains almost non-existent. To address the challenges of simultaneously learning robust object localization and representation, we propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts. We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss. Our experiments evidence the benefits of our approach, outperforming by 10 detection method, Single-DGOD [49], on their own diverse weather-driving benchmark.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset