Cloud based Real-Time and Low Latency Scientific Event Analysis

11/27/2018
by   Chen Yang, et al.
0

Astronomy is well recognized as big data driven science. As the novel observation infrastructures are developed, the sky survey cycles have been shortened from a few days to a few seconds, causing data processing pressure to shift from offline to online. However, existing scientific databases focus on offline analysis of long-term historical data, not real-time and low latency analysis of large-scale newly arriving data. In this paper, a cloud based method is proposed to efficiently analyze scientific events on large-scale newly arriving data. The solution is implemented as a highly efficient system, namely Aserv. A set of compact data store and index structures are proposed to describe the proposed scientific events and a typical analysis pattern is formulized as a set of query operations. Domain aware filter, accuracy aware data partition, highly efficient index and frequently used statistical data designs are four key methods to optimize the performance of Aserv. Experimental results under the typical cloud environment show that the presented optimization mechanism can meet the low latency demand for both large data insertion and scientific event analysis. Aserv can insert 3.5 million rows of data within 3 seconds and perform the heaviest query on 6.7 billion rows of data also within 3 seconds. Furthermore, a performance model is given to help Aserv choose the right cloud resource setup to meet the guaranteed real-time performance requirement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset