Clustering and Bayesian network for image of faces classification

04/07/2012
by   Khlifia Jayech, et al.
0

In a content based image classification system, target images are sorted by feature similarities with respect to the query (CBIR). In this paper, we propose to use new approach combining distance tangent, k-means algorithm and Bayesian network for image classification. First, we use the technique of tangent distance to calculate several tangent spaces representing the same image. The objective is to reduce the error in the classification phase. Second, we cut the image in a whole of blocks. For each block, we compute a vector of descriptors. Then, we use K-means to cluster the low-level features including color and texture information to build a vector of labels for each image. Finally, we apply five variants of Bayesian networks classifiers (Naïve Bayes, Global Tree Augmented Naïve Bayes (GTAN), Global Forest Augmented Naïve Bayes (GFAN), Tree Augmented Naïve Bayes for each class (TAN), and Forest Augmented Naïve Bayes for each class (FAN) to classify the image of faces using the vector of labels. In order to validate the feasibility and effectively, we compare the results of GFAN to FAN and to the others classifiers (NB, GTAN, TAN). The results demonstrate FAN outperforms than GFAN, NB, GTAN and TAN in the overall classification accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset