cofga: A Dataset for Fine Grained Classification of Objects from Aerial Imagery

05/26/2021
by   Eran Dahan, et al.
8

Detection and classification of objects in overhead images are two important and challenging problems in computer vision. Among various research areas in this domain, the task of fine-grained classification of objects in overhead images has become ubiquitous in diverse real-world applications, due to recent advances in high-resolution satellite and airborne imaging systems. The small inter-class variations and the large intra class variations caused by the fine grained nature make it a challenging task, especially in low-resource cases. In this paper, we introduce COFGA a new open dataset for the advancement of fine-grained classification research. The 2,104 images in the dataset are collected from an airborne imaging system at 5 15 cm ground sampling distance, providing higher spatial resolution than most public overhead imagery datasets. The 14,256 annotated objects in the dataset were classified into 2 classes, 15 subclasses, 14 unique features, and 8 perceived colors a total of 37 distinct labels making it suitable to the task of fine-grained classification more than any other publicly available overhead imagery dataset. We compare COFGA to other overhead imagery datasets and then describe some distinguished fine-grain classification approaches that were explored during an open data-science competition we have conducted for this task.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset