Cognitively Inspired Cross-Modal Data Generation Using Diffusion Models

05/28/2023
by   Zizhao Hu, et al.
0

Most existing cross-modal generative methods based on diffusion models use guidance to provide control over the latent space to enable conditional generation across different modalities. Such methods focus on providing guidance through separately-trained models, each for one modality. As a result, these methods suffer from cross-modal information loss and are limited to unidirectional conditional generation. Inspired by how humans synchronously acquire multi-modal information and learn the correlation between modalities, we explore a multi-modal diffusion model training and sampling scheme that uses channel-wise image conditioning to learn cross-modality correlation during the training phase to better mimic the learning process in the brain. Our empirical results demonstrate that our approach can achieve data generation conditioned on all correlated modalities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset