Combination of Unified Embedding Model and Observed Features for Knowledge Graph Completion
Knowledge graphs are useful for many artificial intelligence tasks but often have missing data. Hence, a method for completing knowledge graphs is required. Existing approaches include embedding models, the Path Ranking Algorithm, and rule evaluation models. However, these approaches have limitations. For example, all the information is mixed and difficult to interpret in embedding models, and traditional rule evaluation models are basically slow. In this paper, we provide an integrated view of various approaches and combine them to compensate for their limitations. We first unify state-of-the-art embedding models, such as ComplEx and TorusE, reinterpreting them as a variant of translation-based models. Then, we show that these models utilize paths for link prediction and propose a method for evaluating rules based on this idea. Finally, we combine an embedding model and observed feature models to predict missing triples. This is possible because all of these models utilize paths. We also conduct experiments, including link prediction tasks, with standard datasets to evaluate our method and framework. The experiments show that our method can evaluate rules faster than traditional methods and that our framework outperforms state-of-the-art models in terms of link prediction.
READ FULL TEXT