Combine Convolution with Recurrent Networks for Text Classification
Convolutional neural network (CNN) and recurrent neural network (RNN) are two popular architectures used in text classification. Traditional methods to combine the strengths of the two networks rely on streamlining them or concatenating features extracted from them. In this paper, we propose a novel method to keep the strengths of the two networks to a great extent. In the proposed model, a convolutional neural network is applied to learn a 2D weight matrix where each row reflects the importance of each word from different aspects. Meanwhile, we use a bi-directional RNN to process each word and employ a neural tensor layer that fuses forward and backward hidden states to get word representations. In the end, the weight matrix and word representations are combined to obtain the representation in a 2D matrix form for the text. We carry out experiments on a number of datasets for text classification. The experimental results confirm the effectiveness of the proposed method.
READ FULL TEXT