Community detection in inhomogeneous random graphs
We study the problem of detecting whether an inhomogeneous random graph contains a planted community. Specifically, we observe a single realization of a graph. Under the null hypothesis, this graph is a sample from an inhomogeneous random graph, whereas under the alternative, there exists a small subgraph where the edge probabilities are increased by a multiplicative scaling factor. We present a scan test that is able to detect the presence of such a planted community, even when this community is very small and the underlying graph is inhomogeneous. We also derive an information theoretic lower bound for this problem which shows that in some regimes the scan test is almost asymptotically optimal. We illustrate our results through examples and numerical experiments.
READ FULL TEXT