Comparing reliability of grid-based Quality-Diversity algorithms using artificial landscapes
Quality-Diversity (QD) algorithms are a recent type of optimisation methods that search for a collection of both diverse and high performing solutions. They can be used to effectively explore a target problem according to features defined by the user. However, the field of QD still does not possess extensive methodologies and reference benchmarks to compare these algorithms. We propose a simple benchmark to compare the reliability of QD algorithms by optimising the Rastrigin function, an artificial landscape function often used to test global optimisation methods.
READ FULL TEXT