Comparing Scale Parameter Estimators for Gaussian Process Regression: Cross Validation and Maximum Likelihood

07/14/2023
by   Masha Naslidnyk, et al.
0

Gaussian process (GP) regression is a Bayesian nonparametric method for regression and interpolation, offering a principled way of quantifying the uncertainties of predicted function values. For the quantified uncertainties to be well-calibrated, however, the covariance kernel of the GP prior has to be carefully selected. In this paper, we theoretically compare two methods for choosing the kernel in GP regression: cross-validation and maximum likelihood estimation. Focusing on the scale-parameter estimation of a Brownian motion kernel in the noiseless setting, we prove that cross-validation can yield asymptotically well-calibrated credible intervals for a broader class of ground-truth functions than maximum likelihood estimation, suggesting an advantage of the former over the latter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset