Comparing statistical methods to predict leptospirosis incidence using hydro-climatic covariables
Leptospiroris, the infectious disease caused by the spirochete bacteria Leptospira interrogans, constitutes an important public health problem all over the world. In Argentina, some regions present climate and geographic characteristics that favors the habitat of the bacteria Leptospira, whose survival strongly depends on climatic factors. For this reason, regional public health systems should include, as a main factor, the incidence of the disease in order to improve the prediction of potential outbreaks, helping to stop or delay the virus transmission. The classic methods used to perform this kind of predictions are based in autoregressive time series tools which, as it is well known, perform poorly when the data do not meet their requirements. Recently, several nonparametric methods have been introduced to deal with those problems. In this work, we compare a semiparametric method, called Semi-Functional Partial Linear Regression (SFPLR) with the classic ARIMA and a new alternative ARIMAX, in order to select the best predictive tool for the incidence of leptospirosis in the Argentinian Litoral region. In particular, SFPLR and ARIMAX are methods that allow the use of (hydrometeorological) covariables which could improve the prediction of outbreaks of leptospirosis.
READ FULL TEXT