Compete to Win: Enhancing Pseudo Labels for Barely-supervised Medical Image Segmentation

04/15/2023
by   Huimin Wu, et al.
0

This study investigates barely-supervised medical image segmentation where only few labeled data, i.e., single-digit cases are available. We observe the key limitation of the existing state-of-the-art semi-supervised solution cross pseudo supervision is the unsatisfactory precision of foreground classes, leading to a degenerated result under barely-supervised learning. In this paper, we propose a novel Compete-to-Win method (ComWin) to enhance the pseudo label quality. In contrast to directly using one model's predictions as pseudo labels, our key idea is that high-quality pseudo labels should be generated by comparing multiple confidence maps produced by different networks to select the most confident one (a compete-to-win strategy). To further refine pseudo labels at near-boundary areas, an enhanced version of ComWin, namely, ComWin+, is proposed by integrating a boundary-aware enhancement module. Experiments show that our method can achieve the best performance on three public medical image datasets for cardiac structure segmentation, pancreas segmentation and colon tumor segmentation, respectively. The source code is now available at https://github.com/Huiimin5/comwin.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset