Complexity of Deliberative Coalition Formation

02/25/2022
by   Edith Elkind, et al.
0

Elkind et al. (AAAI, 2021) introduced a model for deliberative coalition formation, where a community wishes to identify a strongly supported proposal from a space of alternatives, in order to change the status quo. In their model, agents and proposals are points in a metric space, agents' preferences are determined by distances, and agents deliberate by dynamically forming coalitions around proposals that they prefer over the status quo. The deliberation process operates via k-compromise transitions, where agents from k (current) coalitions come together to form a larger coalition in order to support a (perhaps new) proposal, possibly leaving behind some of the dissenting agents from their old coalitions. A deliberation succeeds if it terminates by identifying a proposal with the largest possible support. For deliberation in d dimensions, Elkind et al. consider two variants of their model: in the Euclidean model, proposals and agent locations are points in R^d and the distance is measured according to ||...||_2; and in the hypercube model, proposals and agent locations are vertices of the d-dimensional hypercube and the metric is the Hamming distance. They show that in the continuous model 2-compromises are guaranteed to succeed, but in the discrete model for deliberation to succeed it may be necessary to use k-compromises with k >= d. We complement their analysis by (1) proving that in both models it is hard to find a proposal with a high degree of support, and even a 2-compromise transition may be hard to compute; (2) showing that a sequence of 2-compromise transitions may be exponentially long; (3) strengthening the lower bound on the size of the compromise for the d-hypercube model from d to 2^Ω(d).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset