Compressed Sensing for Energy-Efficient Wireless Telemonitoring: Challenges and Opportunities

11/15/2013
by   Zhilin Zhang, et al.
0

As a lossy compression framework, compressed sensing has drawn much attention in wireless telemonitoring of biosignals due to its ability to reduce energy consumption and make possible the design of low-power devices. However, the non-sparseness of biosignals presents a major challenge to compressed sensing. This study proposes and evaluates a spatio-temporal sparse Bayesian learning algorithm, which has the desired ability to recover such non-sparse biosignals. It exploits both temporal correlation in each individual biosignal and inter-channel correlation among biosignals from different channels. The proposed algorithm was used for compressed sensing of multichannel electroencephalographic (EEG) signals for estimating vehicle drivers' drowsiness. Results showed that the drowsiness estimation was almost unaffected even if raw EEG signals (containing various artifacts) were compressed by 90

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset