Computational Approaches to Access Probabilistic Population Codes for Higher Cognition an Decision-Making

04/25/2019
by   Kevin Jasberg, et al.
0

In recent years, research unveiled more and more evidence for the so-called Bayesian Brain Paradigm, i.e. the human brain is interpreted as a probabilistic inference machine and Bayesian modelling approaches are hence used successfully. One of the many theories is that of Probabilistic Population Codes (PPC). Although this model has so far only been considered as meaningful and useful for sensory perception as well as motor control, it has always been suggested that this mechanism also underlies higher cognition and decision-making. However, the adequacy of PPC for this regard cannot be confirmed by means of neurological standard measurement procedures. In this article we combine the parallel research branches of recommender systems and predictive data mining with theoretical neuroscience. The nexus of both fields is given by behavioural variability and resulting internal distributions. We adopt latest experimental settings and measurement approaches from predictive data mining to obtain these internal distributions, to inform the theoretical PPC approach and to deduce medical correlates which can indeed be measured in vivo. This is a strong hint for the applicability of the PPC approach and the Bayesian Brain Paradigm for higher cognition and human decision-making.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset