Computing envy-freeable allocations with limited subsidies

02/06/2020
by   Ioannis Caragiannis, et al.
0

Fair division has emerged as a very hot topic in AI, and envy-freeness is arguably the most compelling fairness concept. An allocation of indivisible items to agents is envy-free if no agent prefers the bundle of any other agent to his own in terms of value. As envy-freeness is rarely a feasible goal, there is a recent focus on relaxations of its definition. An approach in this direction is to complement allocations with payments (or subsidies) to the agents. A feasible goal then is to achieve envy-freeness in terms of the total value an agent gets from the allocation and the subsidies. We consider the natural optimization problem of computing allocations that are envy-freeable using the minimum amount of subsidies. As the problem is NP-hard, we focus on the design of approximation algorithms. On the positive side, we present an algorithm which, for a constant number of agents, approximates the minimum amount of subsidies within any required accuracy, at the expense of a graceful increase in the running time. On the negative side, we show that, for a superconstant number of agents, the problem of minimizing subsidies for envy-freeness is not only hard to compute exactly (as a folklore argument shows) but also, more importantly, hard to approximate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro