Computing Ex Ante Coordinated Team-Maxmin Equilibria in Zero-Sum Multiplayer Extensive-Form Games
Computational game theory has many applications in the modern world in both adversarial situations and the optimization of social good. While there exist many algorithms for computing solutions in two-player interactions, finding optimal strategies in multiplayer interactions efficiently remains an open challenge. This paper focuses on computing the multiplayer Team-Maxmin Equilibrium with Coordination device (TMECor) in zero-sum extensive-form games. TMECor models scenarios when a team of players coordinates ex ante against an adversary. Such situations can be found in card games (e.g., in Bridge and Poker), when a team works together to beat a target player but communication is prohibited; and also in real world, e.g., in forest-protection operations, when coordinated groups have limited contact during interdicting illegal loggers. The existing algorithms struggle to find a TMECor efficiently because of their high computational costs. To compute a TMECor in larger games, we make the following key contributions: (1) we propose a hybrid-form strategy representation for the team, which preserves the set of equilibria; (2) we introduce a column-generation algorithm with a guaranteed finite-time convergence in the infinite strategy space based on a novel best-response oracle; (3) we develop an associated-representation technique for the exact representation of the multilinear terms in the best-response oracle; and (4) we experimentally show that our algorithm is several orders of magnitude faster than prior state-of-the-art algorithms in large games.
READ FULL TEXT