Computing minimal distinguishing Hennessy-Milner formulas is NP-hard, but variants are tractable
We study the problem of computing minimal distinguishing formulas for non-bisimilar states in finite LTSs. We show that this is NP-hard if the size of the formula must be minimal. Similarly, the existence of a short distinguishing trace is NP-complete. However, we can provide polynomial algorithms, if minimality is formulated as the minimal number of nested modalities, and it can even be extended by recursively requiring a minimal number of nested negations. A prototype implementation shows that the generated formulas are much smaller than those generated by the method introduced by Cleaveland.
READ FULL TEXT