Concatenated Forward Error Correction with KP4 and Single Parity Check Codes
Concatenated forward error correction is studied based on an outer KP4 Reed-Solomon code with hard-decision decoding and inner single parity check (SPC) codes with Chase/Wagner soft-decision decoding. Analytical expressions are derived for the end-to-end frame and bit error rates for transmission over additive white Gaussian noise channels with binary phase-shift keying (BPSK) and quaternary amplitude shift keying (4-ASK), as well as with symbol interleavers and quantized channel outputs. The BPSK error rates are compared to those of two other inner codes, namely a two-dimensional product code with SPC component codes and an extended Hamming code. Simulation results for unit-memory inter-symbol interference channels and 4-ASK are also presented. The results show that the coding schemes achieve similar error rates but SPC codes have the lowest complexity and permit flexible rate adaptation.
READ FULL TEXT