Concurrent Segmentation and Object Detection CNNs for Aircraft Detection and Identification in Satellite Images
Detecting and identifying objects in satellite images is a very challenging task: objects of interest are often very small and features can be difficult to recognize even using very high resolution imagery. For most applications, this translates into a trade-off between recall and precision. We present here a dedicated method to detect and identify aircraft, combining two very different convolutional neural networks (CNNs): a segmentation model, based on a modified U-net architecture, and a detection model, based on the RetinaNet architecture. The results we present show that this combination outperforms significantly each unitary model, reducing drastically the false negative rate.
READ FULL TEXT