Conditional Value-at-Risk for Reachability and Mean Payoff in Markov Decision Processes

05/08/2018
by   Jan Křetínský, et al.
0

We present the conditional value-at-risk (CVaR) in the context of Markov chains and Markov decision processes with reachability and mean-payoff objectives. CVaR quantifies risk by means of the expectation of the worst p-quantile. As such it can be used to design risk-averse systems. We consider not only CVaR constraints, but also introduce their conjunction with expectation constraints and quantile constraints (value-at-risk, VaR). We derive lower and upper bounds on the computational complexity of the respective decision problems and characterize the structure of the strategies in terms of memory and randomization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset