Confidence Inference in Bayesian Networks

01/10/2013
by   Jian Cheng, et al.
0

We present two sampling algorithms for probabilistic confidence inference in Bayesian networks. These two algorithms (we call them AIS-BN-mu and AIS-BN-sigma algorithms) guarantee that estimates of posterior probabilities are with a given probability within a desired precision bound. Our algorithms are based on recent advances in sampling algorithms for (1) estimating the mean of bounded random variables and (2) adaptive importance sampling in Bayesian networks. In addition to a simple stopping rule for sampling that they provide, the AIS-BN-mu and AIS-BN-sigma algorithms are capable of guiding the learning process in the AIS-BN algorithm. An empirical evaluation of the proposed algorithms shows excellent performance, even for very unlikely evidence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset