Confidence-rich Localization and Mapping based on Particle Filter for Robotic Exploration

02/19/2022
by   Yang Xu, et al.
0

This paper mainly studies the information-theoretic exploration in an environmental representation with dense belief, considering pose uncertainty for range sensing robots. Previous works concern more about active mapping/exploration with known poses or utilize inaccurate information metrics, resulting in imbalanced exploration. This motivates us to extend the confidence-rich mutual information (CRMI) with measurable pose uncertainty. Specifically, we propose a Rao-Blackwellized particle filter-based confidence-rich localization and mapping (RBPF-CRLM) scheme with a new closed-form weighting method. We further compute the uncertain CRMI (UCRMI) with the weighted particles by a more accurate approximation. Simulations and experimental evaluations show the localization accuracy and exploration performance of the proposed methods in unstructured environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset