Constructions of involutions over finite fields
An involution over finite fields is a permutation polynomial whose inverse is itself. Owing to this property, involutions over finite fields have been widely used in applications such as cryptography and coding theory. As far as we know, there are not many involutions, and there isn't a general way to construct involutions over finite fields. This paper gives a necessary and sufficient condition for the polynomials of the form x^rh(x^s)∈_q[x] to be involutions over the finite field _q, where r≥ 1 and s | (q-1). By using this criterion we propose a general method to construct involutions of the form x^rh(x^s) over _q from given involutions over the corresponding subgroup of _q^*. Then, many classes of explicit involutions of the form x^rh(x^s) over _q are obtained.
READ FULL TEXT