Contact Tracing Made Un-relay-able
Automated contact tracing is a key solution to control the spread of airborne transmittable diseases: it traces contacts among individuals in order to alert people about their potential risk of being infected. The current SARS-CoV-2 pandemic put a heavy strain on the healthcare system of many countries. Governments chose different approaches to face the spread of the virus and the contact tracing apps were considered the most effective ones. In particular, by leveraging on the Bluetooth Low-Energy technology, mobile apps allow to achieve a privacy-preserving contact tracing of citizens. While researchers proposed several contact tracing approaches, each government developed its own national contact tracing app. In this paper, we demonstrate that many popular contact tracing apps (e.g., the ones promoted by the Italian, French, Swiss government) are vulnerable to relay attacks. Through such attacks people might get misleadingly diagnosed as positive to SARS-CoV-2, thus being enforced to quarantine and eventually leading to a breakdown of the healthcare system. To tackle this vulnerability, we propose a novel and lightweight solution that prevents relay attacks, while providing the same privacy-preserving features as the current approaches. To evaluate the feasibility of both the relay attack and our novel defence mechanism, we developed a proof of concept against the Italian contact tracing app (i.e., Immuni). The design of our defence allows it to be integrated into any contact tracing app.
READ FULL TEXT