Context-Enhanced Stereo Transformer

10/21/2022
by   Weiyu Guo, et al.
20

Stereo depth estimation is of great interest for computer vision research. However, existing methods struggles to generalize and predict reliably in hazardous regions, such as large uniform regions. To overcome these limitations, we propose Context Enhanced Path (CEP). CEP improves the generalization and robustness against common failure cases in existing solutions by capturing the long-range global information. We construct our stereo depth estimation model, Context Enhanced Stereo Transformer (CSTR), by plugging CEP into the state-of-the-art stereo depth estimation method Stereo Transformer. CSTR is examined on distinct public datasets, such as Scene Flow, Middlebury-2014, KITTI-2015, and MPI-Sintel. We find CSTR outperforms prior approaches by a large margin. For example, in the zero-shot synthetic-to-real setting, CSTR outperforms the best competing approaches on Middlebury-2014 dataset by 11 information is critical for stereo matching task and CEP successfully captures such information.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset