Context-Specific Independence in Bayesian Networks

02/13/2013
by   Craig Boutilier, et al.
0

Bayesian networks provide a language for qualitatively representing the conditional independence properties of a distribution. This allows a natural and compact representation of the distribution, eases knowledge acquisition, and supports effective inference algorithms. It is well-known, however, that there are certain independencies that we cannot capture qualitatively within the Bayesian network structure: independencies that hold only in certain contexts, i.e., given a specific assignment of values to certain variables. In this paper, we propose a formal notion of context-specific independence (CSI), based on regularities in the conditional probability tables (CPTs) at a node. We present a technique, analogous to (and based on) d-separation, for determining when such independence holds in a given network. We then focus on a particular qualitative representation scheme - tree-structured CPTs - for capturing CSI. We suggest ways in which this representation can be used to support effective inference algorithms. In particular, we present a structural decomposition of the resulting network which can improve the performance of clustering algorithms, and an alternative algorithm based on cutset conditioning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset