Contextual Slot Carryover for Disparate Schemas

06/05/2018
by   Chetan Naik, et al.
0

In the slot-filling paradigm, where a user can refer back to slots in the context during a conversation, the goal of the contextual understanding system is to resolve the referring expressions to the appropriate slots in the context. In large-scale multi-domain systems, this presents two challenges - scaling to a very large and potentially unbounded set of slot values, and dealing with diverse schemas. We present a neural network architecture that addresses the slot value scalability challenge by reformulating the contextual interpretation as a decision to carryover a slot from a set of possible candidates. To deal with heterogenous schemas, we introduce a simple data-driven method for trans- forming the candidate slots. Our experiments show that our approach can scale to multiple domains and provides competitive results over a strong baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset