Convergence of the CEM-GMsFEM for Stokes flows in heterogeneous perforated domains

07/07/2020
by   Eric Chung, et al.
0

In this paper, we consider the incompressible Stokes flow problem in a perforated domain and employ the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to solve this problem. The proposed method provides a flexible and systematical approach to construct crucial divergence-free multiscale basis functions for approximating the displacement field. These basis functions are constructed by solving a class of local energy minimization problems over the eigenspaces that contain local information on the heterogeneities. These multiscale basis functions are shown to have the property of exponential decay outside the corresponding local oversampling regions. By adapting the technique of oversampling, the spectral convergence of the method with error bounds related to the coarse mesh size is proved.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset