Convergence Results For Q-Learning With Experience Replay

12/08/2021
by   Liran Szlak, et al.
0

A commonly used heuristic in RL is experience replay (e.g. <cit.>), in which a learner stores and re-uses past trajectories as if they were sampled online. In this work, we initiate a rigorous study of this heuristic in the setting of tabular Q-learning. We provide a convergence rate guarantee, and discuss how it compares to the convergence of Q-learning depending on important parameters such as the frequency and number of replay iterations. We also provide theoretical evidence showing when we might expect this heuristic to strictly improve performance, by introducing and analyzing a simple class of MDPs. Finally, we provide some experiments to support our theoretical findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset