CorrI2P: Deep Image-to-Point Cloud Registration via Dense Correspondence

07/12/2022
by   Siyu Ren, et al.
0

Motivated by the intuition that the critical step of localizing a 2D image in the corresponding 3D point cloud is establishing 2D-3D correspondence between them, we propose the first feature-based dense correspondence framework for addressing the image-to-point cloud registration problem, dubbed CorrI2P, which consists of three modules, i.e., feature embedding, symmetric overlapping region detection, and pose estimation through the established correspondence. Specifically, given a pair of a 2D image and a 3D point cloud, we first transform them into high-dimensional feature space and feed the resulting features into a symmetric overlapping region detector to determine the region where the image and point cloud overlap each other. Then we use the features of the overlapping regions to establish the 2D-3D correspondence before running EPnP within RANSAC to estimate the camera's pose. Experimental results on KITTI and NuScenes datasets show that our CorrI2P outperforms state-of-the-art image-to-point cloud registration methods significantly. We will make the code publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro