Cost-effective Machine Learning Inference Offload for Edge Computing

12/07/2020
by   Christian Makaya, et al.
58

Computing at the edge is increasingly important since a massive amount of data is generated. This poses challenges in transporting all that data to the remote data centers and cloud, where they can be processed and analyzed. On the other hand, harnessing the edge data is essential for offering data-driven and machine learning-based applications, if the challenges, such as device capabilities, connectivity, and heterogeneity can be mitigated. Machine learning applications are very compute-intensive and require processing of large amount of data. However, edge devices are often resources-constrained, in terms of compute resources, power, storage, and network connectivity. Hence, limiting their potential to run efficiently and accurately state-of-the art deep neural network (DNN) models, which are becoming larger and more complex. This paper proposes a novel offloading mechanism by leveraging installed-base on-premises (edge) computational resources. The proposed mechanism allows the edge devices to offload heavy and compute-intensive workloads to edge nodes instead of using remote cloud. Our offloading mechanism has been prototyped and tested with state-of-the art person and object detection DNN models for mobile robots and video surveillance applications. The performance shows a significant gain compared to cloud-based offloading strategies in terms of accuracy and latency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset