Cost Volume Pyramid Based Depth Inference for Multi-View Stereo

12/18/2019
by   Jiayu Yang, et al.
18

We propose a cost volume based neural network for depth inference from multi-view images. We demonstrate that building a cost volume pyramid in a coarse-to-fine manner instead of constructing a cost volume at a fixed resolution leads to a compact, lightweight network and allows us inferring high resolution depth maps to achieve better reconstruction results. To this end, a cost volume based on uniform sampling of fronto-parallel planes across entire depth range is first built at the coarsest resolution of an image. Given current depth estimate, new cost volumes are constructed iteratively on the pixelwise depth residual to perform depth map refinement. While sharing similar insight with Point-MVSNet as predicting and refining depth iteratively, we show that working on cost volume pyramid can lead to a more compact, yet efficient network structure compared with the Point-MVSNet on 3D points. We further provide detailed analyses of relation between (residual) depth sampling and image resolution, which serves as a principle for building compact cost volume pyramid. Experimental results on benchmark datasets show that our model can perform 6x faster and has similar performance as state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset