Counterfactual Explanations Using Optimization With Constraint Learning

09/22/2022
by   Donato Maragno, et al.
0

Counterfactual explanations embody one of the many interpretability techniques that receive increasing attention from the machine learning community. Their potential to make model predictions more sensible to the user is considered to be invaluable. To increase their adoption in practice, several criteria that counterfactual explanations should adhere to have been put forward in the literature. We propose counterfactual explanations using optimization with constraint learning (CE-OCL), a generic and flexible approach that addresses all these criteria and allows room for further extensions. Specifically, we discuss how we can leverage an optimization with constraint learning framework for the generation of counterfactual explanations, and how components of this framework readily map to the criteria. We also propose two novel modeling approaches to address data manifold closeness and diversity, which are two key criteria for practical counterfactual explanations. We test CE-OCL on several datasets and present our results in a case study. Compared against the current state-of-the-art methods, CE-OCL allows for more flexibility and has an overall superior performance in terms of several evaluation metrics proposed in related work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset